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A SCORE FOR CORRECT DATA ASSOCIATION IN MULTI-TARGET TRACKING

D. L. Alspach and R. N. Lobbis
ORINCON CORPORATION
La Jolla, California 92037

SUMMARY

In the real-world multi-target tracking problem, there exists the possi-
bility for many things t0 go wrong. Typical problems which arise
include: 100 few tracks are formed; 100 many tracks are formed (false
tracks); and inaccurate position, course, and speed estimaies are
reported. The above difficulties are often the result of incorrect slloca-
tion of data to individual tracks. Algorithms, while estimating the
motion of a given target, inadvertently mix in clutter and/or measure-
ments from another target. In order for correct allocation of datatoa
given track to be made, one must have an effective scoring formuls;
that is, some means of determining how likely a given assignment of
datais. To be effective, a scoring formula must produce (on the aver-
age) a betier score for correct assignments than for incorrect assign-
ments. Information useful in the scoring process includes a priori intel-
lipence data (such as initial target locations), models of target motion,
models of the transmission channel, and expected moments of clutter
for the sensor gain setting being used. Basically, the score is derived
from the residuals which come out of the processing of a batch of data
with the extended Kalman filter. This is used to evaluate the likelihood
of potential tracks. Although the “likelihood™ has an intuitive meaning,

the term is used here to mean the probability density function p(1) of
the track\\. The expected cost of a given assignment is derived with
the theory of extremasls being used to obtain the expected cost of add-
ing a clutter point in 3 track. The resulting expected cost is then shown
10 behave in a quantitative fashion and this can be visualized from a
geometric viewpoinlf

1. INTRODUCTION

In the jast few years s number of approaches to the problem of
tracking multiple targets in a cluttercd cnvironment have been pub-
lished. Some aspects of the problem that have been considered in
some subsets of these publications include the problem of false alarms
oOr missing measurements, track initialization, multiple measurement
types (MS!) and 1arget classification.

Many of the so-called multi-target trackers described in the open
literature really deal only with the problem of one target in clutter.
This hypothesis of only one target can greatly restrict the viability of
3 multi-target tracker 10 sort out confuscd situations.

Of the trackers that have been proposed, and in some cases imple-
mented, one can see certain simifaritics and differences which allow
the trackers to be grouped into certain classes. The grouping and
certain applications of these groups has led to the following thoughts.

Perhaps the most fundamenta! aspect of a tracker is how it handles
and interacts with the data. The data is after all our handle on the real
world and al! the information we have about a specific tracking realiza-
tion is contained in the data. A second fundamental aspect of the
multi-target tracking in clutter problem is that of alternate hypotheses.
It is possible to derive the probability distribution of tracks and clutter
points if one carefully specifies the a priori probability base, i.e., the
probabilistic target models, probabilistic measurement models, etc.

In very simple cases where one can get the optimal solution, one finds
this consists of all possible configurations of the data into the sets. In
each configuration each data sct represents a possible altemnate track
or the set of clutter points. A probability mcasure is assigned to each
possible total surveillance region picturc. This globally optimal
approach is generally not reasonable for implementation and approxi-
mate or suboptimal approaches must be considered.

Several approaches focus entirely on the construction of the sets of
data (the construction of feasible tracks). 1t is this latter philosophy
that is being sddressed in this paper.

Conceptually, using maximum likclihood techniques, various com-
binations of dsta sre iried and then “scorcd”™ using log-likelihood
functions. The dest fit to the tarpei model gets the lowest score and
this is considered to be one of the tracks in the region if no other low

score track competes for the same measurements. If two or more
targets compete for the same measurements, scveral situgtions can
occur. These include the possibilities that the two targets are lumped
together, one target is rejected, the targets get mixed with track points
amigned 10 clutter and two “bad™ tracks reported, or the case that all
Points are assigned to clutter. It is possible, though perhaps not nor-
mal, to find situations where the choice of the best nonaverlapping
feasible track does not correspond 1o a best surveillance picture. This
is quite eaty to do if the tracks overlap and compete for the same
measurements.

Many trackers consider alternate hypotheses as far as assipning mea-
surcments to a track. Howcver, once a decision has been made that 2
messurement belor.gs with another group of measurements, this deci-
sion is not re-examined. Once the decision has been made to assign a
piece of data 10 a “track,” that decision is final. This is done because
the system usually requires “an answer.” Also, there is always new
data coming into the tracker allowing new hypothesis tests. In addi-
tion, there is a limited amount of computer response. One could 2y
that the hypothesis testing is directed to make a decision on the
proper surveillance picture or that the tracker is “decision dirccted.”

In the next section, we will see how effective scoring algorithms are
developed—ones which can handle the altemate scenarios posed above.
Following this, in Section 3, a refinement 1o this scoring alporithm is
Pproposed and it is seen that the average cost incurred for assigning
measurements 10 tracks can be visualized from a geometrical view-
point. In particular, it will be shown quantitatively that there exists
a unique number of points (measurements) in a given track that yields
sn gverage minimum cost. Incorrectly assigning clutter points to this
track and wrongly assigning points to clutter will, on the average,
incresse the cost in a well-defined manner,

2. SCORING ALGORITHMS

In order for a correct assignment of measurement data to a given
track to be made, we must have an effective scoring formula, i-e.,
some means of determining how likely a given assipgnment of data is.
To be effective, a scoring formula must produce (on the average) a
better score for correct assignments than lor incorrect assipnments.
Information uscful in the scoring process includes a priori intelligence
data (such as initia] target locations), models of target motion, and
expected amounts of clutter for the sensor gain setting being used.
Basically, the score is derived from the residuals which come out of
the processing of a batch of data with the extended Kalman filter. This
is used to evaluate the likelihood of potential tracks. Although “likeli-
hood" has 2 useful intuitive meaning, we use the tcrm to mean the
probability density function p( A) of the track A. The concepts we use
are well-known, since most of the work in estimation theory pertains
10 situations where all the observations Z= {24.2a,-- -, 2,} areduc to
a single target. An obvious examplke is the stochastic lincar system

k=0,1,..,n, 1))

()

Xxe) = Agxy * Bkuk'

lk 'Cklk’vk, k‘l.‘--.ll.
with states  {x, } € R%, observations {2y} C R2, process noise { uy )€ RV,
and measurement noise {vi) CRY. Ay, By, Cy arc matrices of appropri-
ate dimension that may vary with time. The initial state xg is a Gaussian
random vector with covatiance Pg, independent of the processes [uy}
and {vy ], which are themsclves 2ero mean white Gaussian noise with
covariances {Qx) and {Ry). Under these assumptions, the wel
known Kalman equations provide minimum variance unbiased estimates
{£x) of the states bascd on all past data: .




Sker ™ Aply ¥ Kgloge U iy 0]
Ky = FChayCie PiCiny + Ryap), “
Py = APAL+BLO.BL, (%)
Prer ® (- KyCpep)By, k=0, 1, m. ©

When nonlinear measurements are involved, a simple Jinearization
process (the extended Kalman filter) is used. The equations remain
exactly the same, except that the term

2ot - Cro1 AkSk 7
in the first equation above is replaced by
24 - har(AgRy) ®

where hy 4, (-) denotes the nonlincar relabionship between the measure-
ments and state vector, and the Cy-matrix becomes

B ahk(x) ©)
Axiy.)

Cy

1t is natural to compute the likelihood function p(1) for the track
AC Z based qn the Kaiman filter state estimates. The innovations
sequence is an integral part of this computation, which is a sequence of
the measurement residuals:

3k¢| = ke 'ck*l Akik , k=0,1, ., n. 10)

The (negative) log likelihood function is given in terms of {5,) by
n

n
c) = ndim@ 22+ L vyl + L3 sfvle,. an
“ k=l ° k=l

The covariance matrix for the measurement residual, ¥y, can be coni-
puted directly:

Vi = Cos1PiCle + Ryape k=12, m. an
Each feasible track is the result of a hypothesis test that uses the
track likelihood function p( 2 ) (or equivalently, the negative log likeli-
hood ¢(1)) detennined from the Kalman filter. Since the density
function of the alternative hypothesis (that A is not a track) is unknown,
the decision rule is simply

<(A) =Inp | [8 ) >ap~A€F, 13)

<(A)=mlnpA | (&)} fa)) < an A (F, (14)
Buased on the log likelihood decision function, the feasible track set is

F={an 2Zminp(A ] {5y ) fu) > 0} (15)

Primarily, the only random component of c(1) is
=stv-ls 16)

which for real tracks is a chi-squared random variable with n - dimension

(z) degrees of freedom.® Therefure, error prohabilitics can easily be com-
puted for the hypothesis test 10 predict the accuracy of feasible track con-
struction. This has a critical impact on the ultimate accuracy of the track-

ing algorithm, since a seal track mistakenly exclused from F cannot be
used in the subsequent Bayesiun decision process.

*Dve 10 the random nature of the measurement arvival time and of the sensor
whieh s “'the nest Mme 1," the devel of Vy is ako random
in natere but it 1s hard to Pare ils ing from one reslization 10 the mexl.

Belwie uny ncw point is wddesd (0 @ purtsal ack, 18 shusikd gase o
coarse test,

Hoylo < 8, un
a fine test,
skvid e, <, (%)

and, finally, the likelihood test. The coarse test checks the magnitude of
the maximum component of the vector 8, ¢ RZ apunst $y.and is
included because it is computationally cheaper to perform than the fine
test. The constants By and ¥y can be chosen so that

{lkliﬁvi" 8 < n} {tkl lléklI. <—Bk}. (19)

One difficulty with this approach is that because of the “deterministic”™
terms in the likelihood function

n
ndm@)in2x +1 30 In Iv,l (20)
© k=)
it is difficult to compare some of the tracks of different length. It is
also difficult to assess the absolute goodness of a score. Therefore, an

alternate score with a more absolute meaning can be defined. This is
described in the next scction.

3. REFINED SCORING
For track i at stage k define the stapewise chi-squared score
sk = ak-Tvil af-2h - @n

This has the features—if all measurements have been assigned to the
correct targets and all filter parameters chosen corfectly —that

E(S}) = E(S,) =2 (2
E{(Sy-22) = 4 (23)
os, " 2 )

us)=0,s <0

#(S) = /2 S). 2
(S) = e™>/<(S) US) =1, S >0 (25)

where E (-} indicates the expected value operator, o Sy is the standard
deviation of Sy, and f(S) is the appropriate density function for a two-

dimensional random variable S. Define the cumulative chi-squared score
as

n:
i
si = 2 s'k . M Qo)
k=1 - _ .
For easy evaluation on 3 single track an evaluation cost that would te
quite meaningful would be

G = Kl.- si. an
For this cost function the statistical parameters are
EC) =2 28)

E ((c..2)2) = 4N °c, = Q[Ni” 29)

L NeD) eyr2

- Uy). 30)
Ir(Ny)

fcly) =
c N

For display purposes the use of C; a3 a value measure of a singk track
makes a great deal of intuitive sense.

Values of C; << 2 for reasonable length tracks tend to imply that the
fiiter parameters are set 100 loose. Thus, by reducing Qy and/or Ry, one
vould obtain tighter tracks. Tracks for which C; >> 2 clcarly reprvsont

bad data assignment which shouki not be kept. More preciscly, if




G # 2+ a2/NY 31)

when o = 3 (for a 3-sigma case) indicates either that incorrect datu has
been assipned to the track or thal the filter parameters (Q,R) are too
small. While

ccz-.zm , >3 for ¢=3 (32)
indicates that the filter parameters (Q,R) arc sct too large.

For a 1otal surveillance region picture of M measurement points and
L tracks, one has:

Number of Points
Track No. Scure in Track
1 C, Ny
2 Cy Ny
L CL Ny

The score for the total area should be made up of these scores and the
cost for assigning a point to clutter. The number of points in clutter is
N, the number of points assigned 10 targets is Np, and the total number
of measurements are M. These are related by

M = Ne+Np Np= XN (33)
i=1
A meaningful score could be defined as:
L
S =Y NCi+NcSc (4)
i)

where S is a score defined for a clutter point. If all the measurements
are correctly assigned to the track:

L
E(S) = 2 35 N;+NcSc (35)
i=)
= (M- Nc) + NCSC . (36) -

If we define the clutter score. S, and a total surveillunce score as

where, if all the measurement points belong to the track,

E(C) = 3 ES) = L (2M- N + Ne Sl 38

Bo = 2250 o X5 39)

so that a plot of the score for a g|oba| surveillance region for a real case
of Np measurements assigned to N targets with alt points assigned cor-
nctly and N, clutter points can be geometrically described by Figure 1.

The curve from N=0, that is, all points ussigned to clutter, to N=Np,
the correct number of points ussigzned to clutter, is just a straight linc
described by:

ES) = 2‘—5-) 1‘12 Sc. (40)

where

Ng varies from M to M-Np .

Beyond the point (N=Np), s clutter point must be assigned to the track
{uavwuming just one lfucls in cutter). The vent 1o assipn a single clutter
point to the track can be caleutated in the following mannee: A given

truck will project (o a pven peunt in nwasurement space. o exampl,
consider the two-dimensional measurement vecior (7, @) descrthed m
Figure 2.

If a clutter point is added 1o the track. the increase in score on the
track will be given by Equations (21) and (37). The ditterenc? s tha'
now the value of the score can by writien as

L
C'%'-};}z Niciﬂnc-l)scoci% . “n)
i=!
Tm‘n‘:ll-:uck

POINts afe properly
ssagned

" Here Cj is the cost for assigning one clutier point 10 the track. Cj
is a random variable and its distribution depends on the distribution
of the clutter points. From Equation (21),

¢§ = -t vil -1 “2)

where zﬁ are the 7,a points for the clutter point. The distribution of
this random variable depends on the random nature of the clutter.

If the distance of the clutter point from the predicted point 15 assumed
1o be Gaussian in v and e with zero mean, the distance from the pre-
dicted point will be Rayleigh distributed and the cost or scor C , the
weighted square of the distance (42), will have an exponential density

2 -
fcl(c) = ;1; /207 y(o): u(c) = 0,¢<0 @
0

u(c) = 1,¢ >0

where o2 is a measure of the dispersion of the clutter points with
respect to the mid- or tracker-predicted point. The uncertainty, 0,
takes into account the unequal variance in r and o and is given by:

0l = (range of @ in surf:c:) (range of 7 in surface) (44)

The score for the closest clutter point to a point predicted by the
tracker (closest in the sense of having the smallest score delined by
(42)) will be distributed as follows (x = scure of the closest point):

F x(X) = probability that the closest clutter point out of
Ne¢ having a score less than or ¢qual to x.

Fx) = 1- exl20? ($)

From the theory of extremals, it 1s obvious that this distribu-
tion is identical to the probability distribution of the event defined
below,

e e
Fy(x) = {probability that all of the N~ clutter points have
scores less than or equal to x}

Fy(x) = 1- {probability that ull N¢ clutter points have
scofes greater than x}

From (43), it follows that the probability that the score of any onc of
the Ne clutter points being greater than x is given by:

ex/2e 2 . (46)

Assuming the clutter points are independent of one another, the
probability that all of the Ne clutter points have scores greater than
x is given by

. 202
echl [

and the probability that all of these clutter points have scores less than
or equal to x is:

“Nex/2e2
1. Ner2e “n
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The expected value of the cost of assigning the closest clutter point to a
track is then given by:
- . 2
E(x) = xf(x)dx = =20, “49)
o N¢
The expected cost for assigning the next nearest point (0 a track is
k]
49=
(NC - ) 0

and, finslly, the expected cost for adding the kIP closest clutter point
out of N to a track is given by:

2,2
No+ 1% . (£1))
Note that in computing the expected value of the totul cost function
defined in (41), one must also account for the linear decrease in cost
caused by the decreasing weighting coefficient (NG-k) on S¢ when k
clutter points are incorrectly assigned to tracks. Tliis amounts to a
decrease of Sc/M for every clutter point assigned to a track. Therefore,
the net increase in the expecied cost by assigning the k closest clutter
points.out of N to tracks is given by:

‘E —is . ] 2

l J

I eliedt, thin i Shie s OF a0 increasing hypet holic Tuncton sl
a decreamng lincar function.

Since, on the average. 92 3> S, the shape of the right-hand side of
the curve in Figure | is concave and monotonically increasing.

Note the two regions of this figure. In one part fewer points afe
sssigned o tracks than aciually are available, i.c., 100 many detections
were missed. In the other half of the figure, false alarms or clutter
points were assigned (0 tracks. In both paris of the curwe the assump-
tion is made that the data association is done in an optimal manner on
the average. Thus, if a clutier point is added 10 a track, it is the clutter
point that lics “'closest”™ 10 a track of those unassigned. The curve aho
assumes that all measurements correctly assigned as track points ane
assigned 1o the correct irack. Wrong assignments of data wouild, of
course, make for even worse scores **on the averape.™

4, CONCLUSIONS

In the Jast section, it was shown that the refined scoring alporithm
possesses appealing propertics from a peometric viewpoint. There
exists 3 unique number of points in a track that results in lower averape
cost than any other number. Also, the sensitivity of the score 10 varia-
tions in agsipned number of track points can be controlled by the clutter
score, S¢. This is readily apparent from Figure 1.

This scoring algorithm is therefore a very useful approach in extract-
ing clutter points out of a given target track.

The algorithm is currently being applicd to an ocean surveillance
problem and the results of this are very encouraging. For a given data
set having a false alarm rate of 1074, i.c., one clutter point in every 109
measurements, using the refined scoring algorithm defined in Section 3,
we have found that we can effectively decrease this false alarm rate to
10-7. This represents a three-order-of-magnitude decrease and, hence,
the detection capabilities of the tracking algorithm have beea signifi-
cantly enhanced.

EACH POINT WRONGLY ASSIGNED TO

s CLUTTER ADDS (S¢-21/M MORE TO
THE SCORE THAN ASSIGNING IV
¥ TO THE T K.
CORRECTLY TO RAC NOTE ASSIGNING CLUTTER POINTS
. TO TRACKS MEANS ASSIGNING
' THOSE POINTS “CLOSEST" (IN
. MEASUREMENT SPACE) FIRST
1 e~ WITH SUCCESSIVELY WORSE
POINTS NEXT.
c
3
q
N N EXPECTED COSY DUE
’('—,"‘) \ TO RANDOMNESS OF
TN CORRECT ASSIGNMENT
Nes,”
" CORRECT NUMBER OF POINTS COSY FOR
ASSIGNED T0 TRACKS CLUTTER
l -
Np
ALL POINTS ASSIGNED ALL POINTS ASSIGNED
TOCLUTTER 70 TRACKS
N et

N = NUMBER OF POINTS ASSIGNED TO TRACKS

Figure 1. Geometrical description of refined scoring algorithm.
4




R aticante SN R

ve

-

PREDICTED MEASURE-
® MENT POINT FOR THIS
SURFACE

CLUTTER PAIRS
o INDICATED 8Y
0oTs

Figure 2. Two-dimensional measurement space.
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